Зарегистрироваться
Восстановить пароль
FAQ по входу

Bellot G. Introduction to p-adic numbers: An overview of ultrametric spaces and p-adic numbers

  • Файл формата pdf
  • размером 537,45 КБ
  • Добавлен пользователем
  • Описание отредактировано
Bellot G. Introduction to p-adic numbers: An overview of ultrametric spaces and p-adic numbers
Без издат. данных. — 55 p.
The theory of p-adic numbers is apply to the theory of numbers, especially the theory of quadratic forms, but later on found satisfaction from studying the properties of the field p-adic numbers by itself.
Another important contribution to the p-adic theory was published in 1917 by Aleksandr Markovič Ostrovskij, cataloguing all the possible valuations on Q, which was one of the most important founding stones of the theory of p-adic analysis.
It might be interesting to note that the modern p-adic theory has manifold applications in the world of physics as well. In chapter three we will briefly mention one of them, related to high-energy physics, but the p-adic numbers also find applications in quantum physics, string theory, molecular biology and chaotic physical systems.
  • Чтобы скачать этот файл зарегистрируйтесь и/или войдите на сайт используя форму сверху.
  • Регистрация