Изд. 9-е, испр. — М.: МЦНМО, 2019. — XII + 676 с. (корректура предстоящего десятого издания)
Университетский учебник для студентов физико-математических специальностей. Может быть полезен для факультетов и вузов с расширенной математической подготовкой, а также специалистам в области математики и ее приложений.
Глава IX. Непрерывные отображения (общая теория).
Глава Х. Дифференциальное исчисление с более общей точки зрения (общая теория).
Глава XI. Кратные интегралы.
Глава XII. Поверхности и дифференциальные формы в Rn.
Глава XIII. Криволинейные и поверхностные интегралы.
Глава XIV. Элементы векторного анализа и теории поля.
Глава XV. Интегрирование дифференциальных форм на многообразиях.
Глава XVI. Равномерная сходимость и основные операции анализа над рядами и семействами функций.
Глава XVII. Интегралы, зависящие от параметра.
Глава XVIII. Ряд Фурье и преобразование Фурье.
Глава XIX. Асимптотические разложения.