New York: Springer, 2004. — 321 p.
Complex geometry is a highly attractive branch of modern mathematics that has witnessed many years of active and successful research and that has recently obtained new impetus from physicists' interest in questions related to mirror symmetry. Due to its interactions with various other fields (differential, algebraic, and arithmetic geometry, but also string theory and conformal field theory), it has become an area with many facets. Also, there are a number of challenging open problems which contribute to the subject's attraction. The most famous among them is the Hodge conjecture, one of the seven one-million dollar millennium problems of the Clay Mathematics Institute. So, it seems likely that this area will fascinate new generations for many years to come.
Complex geometry, as presented in this book, studies the geometry of (mostly compact) complex manifolds. A complex manifold is a differentiable
manifold endowed with the additional datum of a complex structure which is much more rigid than the geometrical structures in differential geometry. Due to this rigidity, one is often able to describe the geometry of complex manifolds in very explicit terms. E.g. the important class of projective manifolds can, in principle, be described as zero sets of polynomials.