Зарегистрироваться
Восстановить пароль
FAQ по входу

Joyner D. Distribution Theorems of L-functions

  • Файл формата pdf
  • размером 15,30 МБ
  • Добавлен пользователем
  • Описание отредактировано
Joyner D. Distribution Theorems of L-functions
John Wiley&sons, 1986. — 261 p.
In mathematics, an L-function is a meromorphic function on the complex plane, associated to one out of several categories of mathematical objects. An L-series is a Dirichlet series, usually convergent on a half-plane, that may give rise to an L-function via analytic continuation. The Riemann zeta function is an example of an L-function, and one important conjecture involving L-functions is the Riemann hypothesis and its generalization.
The theory of L-functions has become a very substantial, and still largely conjectural, part of contemporary analytic number theory. In it, broad generalisations of the Riemann zeta function and the L-series for a Dirichlet character are constructed, and their general properties, in most cases still out of reach of proof, are set out in a systematic way. Because of the Euler product formula there is a deep connection between L-functions and the theory of prime numbers.
  • Чтобы скачать этот файл зарегистрируйтесь и/или войдите на сайт используя форму сверху.
  • Регистрация