Зарегистрироваться
Восстановить пароль
FAQ по входу

Belabas K., Cohen H. Numerical Algorithms for Number Theory: Using Pari/GP

  • Файл формата pdf
  • размером 2,14 МБ
  • Добавлен пользователем
  • Описание отредактировано
Belabas K., Cohen H. Numerical Algorithms for Number Theory: Using Pari/GP
American Mathematical Society, 2021. — x, 430 p. — (Mathematical Surveys and Monographs, 254). — ISBN 978-1-470463519, 978-1-47046556-8.
This book presents multiprecision algorithms used in number theory and elsewhere, such as extrapolation, numerical integration, numerical summation (including multiple zeta values and the Riemann-Siegel formula), evaluation and speed of convergence of continued fractions, Euler products and Euler sums, inverse Mellin transforms, and complex L-functions. For each task, many algorithms are presented, such as Gaussian and doubly-exponential integration, Euler-MacLaurin, Abel-Plana, Lagrange, and Monien summation. Each algorithm is given in detail, together with a complete implementation in the free Pari/GP system. These implementations serve both to make even more precise the inner workings of the algorithms, and to gently introduce advanced features of the Pari/GP language. This book will be appreciated by anyone interested in number theory, specifically in practical implementations, computer experiments and numerical algorithms that can be scaled to produce thousands of digits of accuracy.
Preface
Introduction
Numerical extrapolation
Numerical integration
Numerical summation
Euler products and Euler sums
Gauss and Jacobi sums
Numerical computation of continued fractions
Computation of inverse Mellin transforms
Computation of L-functions
Appendix A. List of relevant GP programs
Bibliography
Index of Programs
General Index
True PDF
  • Чтобы скачать этот файл зарегистрируйтесь и/или войдите на сайт используя форму сверху.
  • Регистрация